metabelian, supersoluble, monomial
Aliases: C62.17C23, C6.4(S3×Q8), (C2×C12).14D6, Dic32.10C2, C4⋊Dic3.5S3, C3⋊Dic3.4Q8, Dic3⋊C4.8S3, (C2×Dic3).5D6, C6.38(C4○D12), C3⋊5(Dic3.Q8), C6.32(D4⋊2S3), C2.6(D12⋊5S3), C32⋊4(C42.C2), Dic3⋊Dic3.5C2, (C6×C12).175C22, C2.9(D6.3D6), C62.C22.9C2, C6.Dic6.6C2, C2.6(Dic3.D6), (C6×Dic3).53C22, (C2×C4).15S32, C22.76(C2×S32), (C3×C6).15(C2×Q8), (C3×C6).7(C4○D4), (C3×Dic3⋊C4).7C2, (C3×C4⋊Dic3).13C2, (C2×C6).36(C22×S3), (C2×C3⋊Dic3).18C22, SmallGroup(288,495)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.17C23
G = < a,b,c,d,e | a6=b6=1, c2=e2=b3, d2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, ede-1=b3d >
Subgroups: 394 in 125 conjugacy classes, 46 normal (44 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C2×C4, C32, Dic3, C12, C2×C6, C2×C6, C42, C4⋊C4, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C42.C2, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C3×C4⋊C4, C6×Dic3, C2×C3⋊Dic3, C6×C12, Dic3.Q8, Dic32, Dic3⋊Dic3, C62.C22, C3×Dic3⋊C4, C3×C4⋊Dic3, C6.Dic6, C62.17C23
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C4○D4, C22×S3, C42.C2, S32, C4○D12, D4⋊2S3, S3×Q8, C2×S32, Dic3.Q8, D12⋊5S3, Dic3.D6, D6.3D6, C62.17C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 93 11 91 9 95)(8 94 12 92 10 96)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)(43 49 45 51 47 53)(44 50 46 52 48 54)(55 61 57 63 59 65)(56 62 58 64 60 66)(67 78 69 74 71 76)(68 73 70 75 72 77)(79 88 83 86 81 90)(80 89 84 87 82 85)
(1 64 16 56)(2 65 17 57)(3 66 18 58)(4 61 13 59)(5 62 14 60)(6 63 15 55)(7 51 91 43)(8 52 92 44)(9 53 93 45)(10 54 94 46)(11 49 95 47)(12 50 96 48)(19 74 26 67)(20 75 27 68)(21 76 28 69)(22 77 29 70)(23 78 30 71)(24 73 25 72)(31 86 38 79)(32 87 39 80)(33 88 40 81)(34 89 41 82)(35 90 42 83)(36 85 37 84)
(1 31 4 34)(2 36 5 33)(3 35 6 32)(7 78 10 75)(8 77 11 74)(9 76 12 73)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)(25 53 28 50)(26 52 29 49)(27 51 30 54)(55 80 58 83)(56 79 59 82)(57 84 60 81)(61 89 64 86)(62 88 65 85)(63 87 66 90)(67 92 70 95)(68 91 71 94)(69 96 72 93)
(1 27 16 20)(2 28 17 21)(3 29 18 22)(4 30 13 23)(5 25 14 24)(6 26 15 19)(7 82 91 89)(8 83 92 90)(9 84 93 85)(10 79 94 86)(11 80 95 87)(12 81 96 88)(31 43 38 51)(32 44 39 52)(33 45 40 53)(34 46 41 54)(35 47 42 49)(36 48 37 50)(55 77 63 70)(56 78 64 71)(57 73 65 72)(58 74 66 67)(59 75 61 68)(60 76 62 69)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,64,16,56)(2,65,17,57)(3,66,18,58)(4,61,13,59)(5,62,14,60)(6,63,15,55)(7,51,91,43)(8,52,92,44)(9,53,93,45)(10,54,94,46)(11,49,95,47)(12,50,96,48)(19,74,26,67)(20,75,27,68)(21,76,28,69)(22,77,29,70)(23,78,30,71)(24,73,25,72)(31,86,38,79)(32,87,39,80)(33,88,40,81)(34,89,41,82)(35,90,42,83)(36,85,37,84), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)(25,53,28,50)(26,52,29,49)(27,51,30,54)(55,80,58,83)(56,79,59,82)(57,84,60,81)(61,89,64,86)(62,88,65,85)(63,87,66,90)(67,92,70,95)(68,91,71,94)(69,96,72,93), (1,27,16,20)(2,28,17,21)(3,29,18,22)(4,30,13,23)(5,25,14,24)(6,26,15,19)(7,82,91,89)(8,83,92,90)(9,84,93,85)(10,79,94,86)(11,80,95,87)(12,81,96,88)(31,43,38,51)(32,44,39,52)(33,45,40,53)(34,46,41,54)(35,47,42,49)(36,48,37,50)(55,77,63,70)(56,78,64,71)(57,73,65,72)(58,74,66,67)(59,75,61,68)(60,76,62,69)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,64,16,56)(2,65,17,57)(3,66,18,58)(4,61,13,59)(5,62,14,60)(6,63,15,55)(7,51,91,43)(8,52,92,44)(9,53,93,45)(10,54,94,46)(11,49,95,47)(12,50,96,48)(19,74,26,67)(20,75,27,68)(21,76,28,69)(22,77,29,70)(23,78,30,71)(24,73,25,72)(31,86,38,79)(32,87,39,80)(33,88,40,81)(34,89,41,82)(35,90,42,83)(36,85,37,84), (1,31,4,34)(2,36,5,33)(3,35,6,32)(7,78,10,75)(8,77,11,74)(9,76,12,73)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)(25,53,28,50)(26,52,29,49)(27,51,30,54)(55,80,58,83)(56,79,59,82)(57,84,60,81)(61,89,64,86)(62,88,65,85)(63,87,66,90)(67,92,70,95)(68,91,71,94)(69,96,72,93), (1,27,16,20)(2,28,17,21)(3,29,18,22)(4,30,13,23)(5,25,14,24)(6,26,15,19)(7,82,91,89)(8,83,92,90)(9,84,93,85)(10,79,94,86)(11,80,95,87)(12,81,96,88)(31,43,38,51)(32,44,39,52)(33,45,40,53)(34,46,41,54)(35,47,42,49)(36,48,37,50)(55,77,63,70)(56,78,64,71)(57,73,65,72)(58,74,66,67)(59,75,61,68)(60,76,62,69) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,93,11,91,9,95),(8,94,12,92,10,96),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41),(43,49,45,51,47,53),(44,50,46,52,48,54),(55,61,57,63,59,65),(56,62,58,64,60,66),(67,78,69,74,71,76),(68,73,70,75,72,77),(79,88,83,86,81,90),(80,89,84,87,82,85)], [(1,64,16,56),(2,65,17,57),(3,66,18,58),(4,61,13,59),(5,62,14,60),(6,63,15,55),(7,51,91,43),(8,52,92,44),(9,53,93,45),(10,54,94,46),(11,49,95,47),(12,50,96,48),(19,74,26,67),(20,75,27,68),(21,76,28,69),(22,77,29,70),(23,78,30,71),(24,73,25,72),(31,86,38,79),(32,87,39,80),(33,88,40,81),(34,89,41,82),(35,90,42,83),(36,85,37,84)], [(1,31,4,34),(2,36,5,33),(3,35,6,32),(7,78,10,75),(8,77,11,74),(9,76,12,73),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45),(25,53,28,50),(26,52,29,49),(27,51,30,54),(55,80,58,83),(56,79,59,82),(57,84,60,81),(61,89,64,86),(62,88,65,85),(63,87,66,90),(67,92,70,95),(68,91,71,94),(69,96,72,93)], [(1,27,16,20),(2,28,17,21),(3,29,18,22),(4,30,13,23),(5,25,14,24),(6,26,15,19),(7,82,91,89),(8,83,92,90),(9,84,93,85),(10,79,94,86),(11,80,95,87),(12,81,96,88),(31,43,38,51),(32,44,39,52),(33,45,40,53),(34,46,41,54),(35,47,42,49),(36,48,37,50),(55,77,63,70),(56,78,64,71),(57,73,65,72),(58,74,66,67),(59,75,61,68),(60,76,62,69)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6F | 6G | 6H | 6I | 12A | ··· | 12H | 12I | ··· | 12P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 18 | 18 | 36 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | - | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | Q8 | D6 | D6 | C4○D4 | C4○D12 | S32 | D4⋊2S3 | S3×Q8 | C2×S32 | D12⋊5S3 | Dic3.D6 | D6.3D6 |
kernel | C62.17C23 | Dic32 | Dic3⋊Dic3 | C62.C22 | C3×Dic3⋊C4 | C3×C4⋊Dic3 | C6.Dic6 | Dic3⋊C4 | C4⋊Dic3 | C3⋊Dic3 | C2×Dic3 | C2×C12 | C3×C6 | C6 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 1 | 2 | 2 | 1 | 2 | 2 | 2 |
Matrix representation of C62.17C23 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 12 |
6 | 7 | 0 | 0 | 0 | 0 |
8 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
7 | 3 | 0 | 0 | 0 | 0 |
5 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 9 | 2 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12],[6,8,0,0,0,0,7,7,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[7,5,0,0,0,0,3,6,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,11,9,0,0,0,0,4,2] >;
C62.17C23 in GAP, Magma, Sage, TeX
C_6^2._{17}C_2^3
% in TeX
G:=Group("C6^2.17C2^3");
// GroupNames label
G:=SmallGroup(288,495);
// by ID
G=gap.SmallGroup(288,495);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,254,219,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=1,c^2=e^2=b^3,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,e*d*e^-1=b^3*d>;
// generators/relations